VBF_Hbb analysis with CMS(LHC) 2018 data of *pp*collisions at 13 TeV

Armen Tumasyan

ANLS-EPD, 23.06.2021

- Introduction
- Analysis strategy and event selection
- Data/MC comparison
- Signal-background discrimination
- Signal and background models
- Systematic uncertainties
- Results and expected significance
- b-jet energy regression
- Validation with " $Z \rightarrow bb + 2 \text{ jets}$ " as standard candle
- Upcoming works

Introduction

Higgs-fermion vertex

 $H \rightarrow b\bar{b}$ features:

l branching ratio $\sim 58 \%$

direct access to *H-b* coupling

difficulties with event reconstruction

One of the main challenges for LHC Run_2 (2015-18):

Observation of Higgs boson in 3rd generation fermions decay modes.

Features of VBF $H \rightarrow b\overline{b}$: ($\sigma \approx 2.2 \text{ pb at } 13 \text{ TeV}$)

two *b*-quark jets from Higgs boson decay mainly in central region of CMS
 two light-quark jets from scattered quarks with large Δη and inv. mass and forward-backward tend
 low additional hadron activity
 well suppressed background

- $H \rightarrow bb \ observation \ (main \ contribution \ from \ VH_Hbb \ channel)$
 - ATLAS:
 $\mu = 1.02 \pm 0.12(\text{stat.}) \pm 0.14(\text{syst.}), \underline{6.7 \sigma}$ (with 2018 data)

 ATLAS Collaboration, Eur.Phys.J.C 81(2021)178
 (with 2018 data)

 CMS:
 $\mu = 1.04 \pm 0.20, \underline{5.6 \sigma}$ (without 2018 data)

 CMS Collaboration, Phys.Rev.Lett. 121(2018)121801
- VBF H→bb status

ATLAS: $\mu = 0.95 \pm 0.31$ (stat.) (+ 0.20 - 0.17) (syst.), <u>2.7 σ </u> (VBF inclusive)

 $\mu = 0.99 (+0.36 - 0.34), \underline{3.0 \sigma} \text{ (VBF combined)} (\text{Run}_2 \sim 126 \text{ fb}^{-1})$

(complementary measurement of VBF_Hbb in association with photon)

ATLAS Collaboration, arXiv:2011.08280v1 [hep-ex] 16 Nov 2020

CMS :Run_2 analysis: ongoing
Statistics: 2016: 35.9 fb⁻¹2017: 7.7 fb⁻¹2018: 59.7 fb⁻¹

Analysis strategy

Two main analysis categories based on two main features of VBF_Hbb process:

- □ **SingleB** relies on **tight** VBF topology and **soft** b-tagging
- **DoubleB** relies on **soft** VBF topology and **tight** b-tagging

Event selection and interpretation

Online Triggers:

(recorded integral luminosity in $2018 \sim 54.4 \text{ fb}^{-1}$)

- L1: L1_TripleJet_100_80_70_DoubleJet_80_70_er2p5 (SingleB & DoubleB)
- HLT: HLT_QuadPFJet105_88_76_15_PFBTagDeepCSV_1p3_VBF2 (SingleB)

HLT_QuadPFJet105_88_76_15_DoublePFBTagDeepCSV_1p3_7p7_VBF (DoubleB)

Offline selections: (follows to online triggers logic)

- All considered jets are within $|\eta| < 4.7$, with $P_T > 30$ GeV and passing *loose* PileUp-condition
- 4 offline jets with $P_T > 120, 100, 85, 45 \text{ GeV}$
- 2 most b-tagged jets among 4 (6) P_T -leading jets with $|\eta| < 2.4$ selected as b-jets (1st and 2nd b-jets)
- 1st b-jet *tight*-tagged, 2nd b-jet *medium*-tagged, $\Delta \varphi_{bb} < 1.6$ (2.1) in SingleB (DoubleB)
- 2 remaining jets among 4 P_T -leading jets selected as q-jets, $M_{qq} > 500$ (250) GeV, $\Delta \eta_{qq} > 3.8$ (2.5) in SingleB (DoubleB)
- Isolated lepton veto: **NO** *e* with $P_T > 7$ GeV or μ with $P_T > 5$ GeV

SingleB: signal selection efficiency ~ 0.5 % DoubleB: signal selection efficiency ~ 0.6 %

Inclusive SingleB and exclusive DoubleB selections

General information

Reconstruction:

- **□** Particle-Flow (PF) global reconstruction using information from all subsystems: e, μ , γ , charged and neutral hadrons, τ , missing-E_T etc.
- □ AntiKt4 jet algorithm with PF-reconstructed objects
- b-tagging (online/offline) with DeepCSV: DNN inputs: displaced secondary vertex, charged hadrons multiplicity, invariant mass, etc. (total 66 features)

MC samples:

- **Signal**: VBF_Hbb, ggF_Hbb
- Background: QCD (>95%), TTbar, SingleTop, Z+jets, W+jets
- Contribution of other signal or background processes are negligible

MC weights:

- Genweights and XSec normalization
- QCD normalization (k-factor) ~ 1.28 (1.16) for SingleB (DoubleB) selection
- PileUp reweighting, PileUpJetID SFs
- Trigger scale factors (SF) on P_T jets, online b-tagging SFs. online VBF-requirement SFs
- Offline b-tagging SFs

Data vs MC (SingleB)

Data vs MC (SingleB)

Data vs MC (SingleB)

Data vs MC (DoubleB)

Data vs MC (DoubleB)

Data vs MC (DoubleB)

Signal-background discrimination

Even after all selections there is extremely large ratio of background to signal $(10^3 - 10^4)$.

ML discrimination of signal vs background is the best way of weak signal extraction.

MVA Boosted decision trees method was used.

National Laboratory

Signal-background discrimination

Signal and peaking backgrounds models

- □ Contribution of signal (VBF/ggF H→ bb) and peaking background processes (Z → bb, TTbar) are estimated from MC simulations.
- ❑ Shape of m_{bb} distribution modelled (fitted) by superposition of Crystal Ball function and Bersntein polynomial of 2nd order.
- \Box Fits are performed in 80 < m_{bb} < 230 GeV region
- No significant dependence of pdf on BDT score: use same pdf for each category with different normalization value

Combined by all categories

□ QCD modelling done directly from data separately in each category.

- □ Contribution from non-QCD processes (W+Jets, Z+Jets, TTbar, Single-Top, VBF H, ggF H) is estimated from simulation and subtracted from data.
- \Box The m_{bb} spectra are fitted with Chebyshev polynomials, order selected by assessing χ^2 / ndof.

\Box Small (~ 5%) bias has been found.

Systematic uncertainties mainly affect the analysis in 2 ways

- **Shape uncertainties**: effects on m_{bb} distribution
- □ Normalization uncertainties: effects on cross sections, event yields

Additional uncertainty of 30% added for cross section of tt and Z+jets

Listed uncertainties do not affect modelling of QCD background (from data)

Impacts of nuisance parameters on the signal strength

ALIKHANYAN National Laboratory

19

Expected significance

SingleB		
Stat only	Stat + Syst	
1.67	1.63	

DoubleB		
Stat only	Stat + Syst	
0.63	0.58	

Combined		
Stat only	Stat + Syst	
1.78	1.72	

1D Likelihood scan of the signal strength (µ)

 $\mu = 1.0^{+0.61}_{-0.58}$ at 68% CL

Couplings Likelihood scan

Hbb coupling modifier $\kappa_{\rm f}$

HVV coupling modifier $\kappa_{\rm V}$

Additional correction on b-jet energy taking into account energy miscount due to neutrino

in lepton decay modes of B-hadrons. DNN regression.

- **Peak of m**_{bb} shifted closer to 125 GeV
- □ Relative resolution improved by 12%

Result vs b-regression	Signal strength	Expected significance
Without	$1.0^{+0.64}_{-0.61}$	1.63
With	$1.0^{+0.60}_{-0.55}$	1.84

ALIKHANYAN Measurement of $Z \rightarrow bb$ as standard candle

23

- □ Same events selection as inclusive VBF $H \rightarrow bb$
- □ Same BDT inputs for signal vs background discrimination as in VBF $H \rightarrow bb$
- □ Combined fit of the m_{bb} spectra in all event categories as in VBF H→bb
- □ Same approach of signal and background modelling as in VBF $H \rightarrow bb$
- m_{bb} distribution (for signal and peaking backgrounds) fitting performed by combination of Crystal Ball (CB) function and Bernstein polynomial of 2nd order in 60 < m_{bb} < 210 GeV</p>

Signal and peaking background models

CCMS

Results of fit in each BDT-category.

postfit nuisance parameters (systematics)

$Z \rightarrow bb$ signal significance in std. dev.

Expected	4.77
Observed	4.99

- **b**-jet energy regression in DoubleB
- □ Analysis Note: CMS AN-2021/045
- **Recalculation with UL-campaign**
- **Preapproval**
- **Unblind analysis**
- **Approval**
- □ Analysis with 2016 data and combining
- **Publication**

Thank you

backup

Bias study

SingleB

- Signal contribution is very small compared to background.
- Bias in background modelling may substantially affect extracted signal strength
- Bias test is important to test the convergence the background modelling

General approach:

- → Generate toy (~ 500) using nominal QCD background modelling with a definite injected signal strength (μ_{ini})
- → Fit with alternative background functions and determine: (i) Fitted signal strength (μ_{fit}) (ii) Fit uncertainty ($\sigma_{up/down}$)
- \rightarrow Finally bias is calculated as

$$\mathrm{B} = rac{\mu_{\mathrm{inj}} - \mu_{\mathrm{fit}}}{0.5.(\sigma_{\mathrm{fit}}^{\mathrm{up}} + \sigma_{\mathrm{fit}}^{\mathrm{down}})}$$

- → Bias has been measured for combination and each individual categories
- \rightarrow Negligible bias has been found
 - \rightarrow 5-10% depending on category

Alternative model: CAT-4 : Chebyshev pol. of 5th order CAT-5 - 8 : Chebyshev pol. of 3rd order